A cubic system with twelve small amplitude limit cycles

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Twelve Limit Cycles in a Cubic Order Planar System with Z2-symmetry

In this paper, we report the existence of twelve small limit cycles in a planar system with 3rd-degree polynomial functions. The system has Z2symmetry, with a saddle point, or a node, or a focus point at the origin, and two focus points which are symmetric about the origin. It is shown that such a Z2-equivariant vector field can have twelve small limit cycles. Fourteen or sixteen small limit cy...

متن کامل

Twelve limit cycles around a singular point in a planar cubic-degree polynomial system

In this paper, we prove the existence of 12 small-amplitude limit cycles around a singular point in a planar cubic-degree polynomial system. Based on two previously developed cubic systems in the literature, which have been proved to exhibit 11 small-amplitude limit cycles, we applied a different method to show 11 limit cycles. Moreover, we show that one of the systems can actually have 12 smal...

متن کامل

Small amplitude limit cycles for the polynomial Liénard system

We prove a quadratic in m and n estimate for the maximal number of limit cycles bifurcating from a focus for the Liénard equation  x+f(x) _ x+ g(x) = 0; where f and g are polynomials of degree m and n respectively. In the proof we use a bound for the number of double points of a rational a¢ ne curve.

متن کامل

Existence Conditions of Thirteen Limit Cycles in a cubic System

As we know, the second part of the Hilbert problem is to find the maximal number and relative locations of limit cycles of polynomial systems of degree n. Let H(n) denote this number, which is called the Hilbert number. Then the problem of finding H(n) is divided into two parts: find an upper and lower bounds of it. For the upper bound there are important works of Écalle [1990] and IIyashenko a...

متن کامل

Twelve Limit Cycles in a cubic Case of the 16TH Hilbert Problem

In this paper, we prove the existence of twelve small (local) limit cycles in a planar system with third-degree polynomial functions. The best result so far in literature for a cubic order planar system is eleven limit cycles. The system considered in this paper has a saddle point at the origin and two focus points which are symmetric about the origin. This system was studied by the authors and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin des Sciences Mathématiques

سال: 2005

ISSN: 0007-4497

DOI: 10.1016/j.bulsci.2004.05.004